Detect caspase-1 activity with the FLICA 660 Caspase-1 Assay Kit. This in vitro assay employs the fluorescent inhibitor probe 660-YVAD-FMK to label active caspase-1 enzyme in living cells. Analyze the fluorescent signal using fluorescence microscopy or flow cytometry.

Go to Full Product Details

FLICA 660 Caspase-1 Assay Kit
SKU: 9122

Size: 25-51 Tests
Sale price$248.00

Bulk Order FLICA 660 Caspase-1 Assay Kit

Caspases play important roles in apoptosis and inflammation. ICT’s FLICA assay kits are used by researchers seeking to quantitate apoptosis via caspase activity in cultured cells. The FLICA 660 Caspase-1 probe allows researchers to assess caspase-1 activation. The FLICA reagent 660-YVAD-FMK enters each cell and irreversibly binds to activated caspase-1. Because the 660-YVAD-FMK FLICA reagent becomes covalently coupled to the active enzyme, it is retained within the cell, while any unbound 660-YVAD-FMK FLICA reagent diffuses out of the cell and is washed away. The remaining far red fluorescent signal is a direct measure of the active caspase-1 enzyme activity present in the cell at the time the reagent was added. Cells that contain the bound FLICA can be analyzed by fluorescence microscopy or flow cytometry. Cells labeled with the FLICA reagent may be read immediately or preserved for 16 hours using the fixative. Unfixed samples may also be analyzed with Hoechst stain to detect changes in nuclear morphology.
Caspase 1
660 nm / 690 nm
Flow cytometry, Fluorescence microscope
Cell culture
Domestic: Overnight Delivery; International: Priority Shipping
United States
  1. Prepare samples and controls.
  2. Dilute 10X Cellular Wash Buffer 1:10 with diH20.
  3. Reconstitute FLICA with 50 µL DMSO.
  4. Dilute FLICA 1:5 by adding 200 µL PBS.
  5. Add diluted FLICA to each sample at 1:30-1:60 (e.g. spike at 1:30 by adding 10 µL to 290 µL cultured cells).
  6. Incubate approximately 1 hour.
  7. Remove media and wash cells 3 times: add 1X Cellular Wash Buffer and spin cells.
  8. If desired, label with additional stains, such as Hoechst, DAPI, or an antibody.
  9. If desired, fix cells.
  10. Analyze with a fluorescence microscope or flow cytometer. FLICA 660 excites at 660 nm and emits at 680-690 nm.
  • FLICA Caspase-1 Reagent (660-YVAD-FMK), 1 vial, #6323
  • 10X Cellular Wash Buffer, 15 mL, #6164
  • Fixative, 6 mL, #636
  • Kit Manual
  • Mikolajczyk-Martinez, A;Ugorski, M. Unraveling the Role of Type 1 Fimbriae in Salmonella Pathogenesis: Insights from a Comparative Analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poultry Science. 2023 June

    Yan, C;Ma, Y;Li, H;Cui, J;Guo, X;Wang, G;Ji, L. Endoplasmic reticulum stress promotes caspase-1-dependent acinar cell pyroptosis through the PERK pathway to aggravate acute pancreatitis. International immunopharmacology. 2023 May

    Liang, MQ;Wang, FF;Li, Q;Lei, X;Chen, Y;Hu, N. LncRNA SNHG3 Promotes Sevoflurane-Induced Neuronal Injury by Activating NLRP3 via NEK7. Neurochemical research. 2023 April

    Wang, Q;Shan, L. The CARD8 inflammasome drives CD4+T-cell depletion in HIV-1 infection. bioRxiv. 2023 March

    Li, H;Mo, Y;Zhang, X;Zhou, Q;Liang, X;Song, J;Hou, L;Wu, J;Guo, Y;Feng. D;Sun, Y;Yu, J. Heme oxygenase‑1 inhibits renal tubular epithelial cell pyroptosis by regulating mitochondrial function through PINK1. Experimental and Therapeutic Medicine. 2023 March

    Liu, Y;Kong, X;You, Y;Xiang, L;Zhang, Y;Wu, R;Zhou, L;Duan, L. S100A8-Mediated NLRP3 Inflammasome-Dependent Pyroptosis in Macrophages Facilitates Liver Fibrosis Progression. Cells. 2022 November 12; doi: 10.3390/cells11223579. Full Text

    Clark, KM;Kim, JG;Wang, Q;Gao, H;Presti, RM;Shan, L. Chemical inhibition of DPP9 sensitizes the CARD8 inflammasome in HIV-1-infected cells. Nature chemical biology. 2022 November 10; doi: 10.1038/s41589-022-01182-5. Abstract

    Duhalde Vega, M;Olivera, D;Gastão Davanzo, G;Bertullo, M;Noya, V;Fabiano de Souza, G;Primon Muraro, S;Castro, I;Arévalo, AP;Crispo, M;Galliussi, G;Russo, S;Charbonnier, D;Rammauro, F;Jeldres, M;Alamón, C;Varela, V;Batthyany, C;Bollati-Fogolín, M;Oppezzo, P;Pritsch, O;Proença-Módena, JL;Nakaya, HI;Trias, E;Barbeito, L;Anegon, I;Cuturi, MC;Moraes-Vieira, P;Segovia, M;Hill, M. PD-1/PD-L1 blockade abrogates a dysfunctional innate-adaptive immune axis in critical β-coronavirus disease. Science Advances. 2022 September 23; doi: 10.1126/sciadv.abn6545. Abstract

    Shu, L;Du, C. PHLDA1 promotes sevoflurane-induced pyroptosis of neuronal cells in developing rats through TRAF6-mediated activation of Rac1. Neurotoxicology. 2022 September 22; doi: 10.1016/j.neuro.2022.09.007. Article

    Bertoni, A; Penco, F; Mollica, H; Bocca, P; Prigione, I; Corcione, A; Cangelosi, D; Schena, F; Del Zotto, G; Amaro, A; Paladino, N; Pontali, E; Feasi, M; Signa, S; Bustaffa, M; Caorsi, R; Palmeri, S; Contini, P; De Palma, R; Pfeffer, U; Uva, P; Rubartelli, A; Gattorno, M; Volpi, S. Spontaneous NLRP3 inflammasome-driven IL1-β secretion is induced in severe COVID-19 patients and responds to anakinra treatment. The Journal of Allergy and Clinical Immunology. 2022 July 11; doi: 10.1016/j.jaci.2022.05.029. Full Text

    Lan, J;Xu, B;Shi, X;Pan, Q;Tao, Q. WTAP-mediated N6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cellular & Molecular Biology Letters. 2022 June 27; doi: 10.1186/s11658-022-00350-8. Abstract

    Wu, X;Yao, J;Hu, Q;Kang, H;Miao, Y;Zhu, L;Li, C;Zhao, X;Li, J;Wan, M;Tang, W. Emodin Ameliorates Acute Pancreatitis-Associated Lung Injury Through Inhibiting the Alveolar Macrophages Pyroptosis. Frontiers in Pharmacology. 2022 June 2; doi: 10.3389/fphar.2022.873053. Article

    Shen L, Yang Y, Ou T, Key CC, Tong SH, Sequeira RC, Nelson JM, Nie Y, Wang Z, Boudyguina E, Shewale SV, Zhu X. Dietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy. J Lipid Res. 2017 Jul 20. pii: jlr.M075879. doi: 10.1194/jlr.M075879. [Epub ahead of print]. Full Text.

    Moghaddas F, Llamas R, De Nardo D, Martinez-Banaclocha H, Martinez-Garcia JJ, Mesa-Del-Castillo P, Baker PJ, Gargallo V, Mensa-Vilaro A, Canna S, Wicks IP, Pelegrin P, Arostegui JI, Masters SL. A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Ann. Rheum. Dis. 2017. Aug 23. pii: annrheumdis-2017-211473. doi: 10.1136/annrheumdis-2017-211473. [Epub ahead of print]. Abstract

    Swanson KV, Junkins RD, Kurkjian CJ, Holley-Guthrie E, Pendse AA, El Morabiti R, Petrucelli A, Barber GN, Benedict CA, Ting JP. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 2017. Dec 4;214(12):3611-3626. doi: 10.1084/jem.20171749. Epub 2017 Oct 13. Abstract

    Mishra SK, Gao YG, Deng Y, Chalfant CE, Hinchcliffe EH, Brown RE. CPTP: A sphingolipid transfer protein that regulates autophagy and inflammasome activation. Autophagy. 2017. Nov 22:1-46. doi: 10.1080/15548627.2017.1393129. [Epub ahead of print]. Abstract

    Köse-Vogel N, Stengel S, Gardey E, Kirchberger-Tolstik T, Reuken PA, Stallmach A, Bruns T. Transcriptional Suppression of the NLRP3 Inflammasome and Cytokine Release in Primary Macrophages by Low-Dose Anthracyclines. Cells. 2019 Dec 28;9(1). pii: E79. doi: 10.3390/cells9010079. Full Text

    Martín-Nalda A, Fortuny C, Rey L, Bunney TD, Alsina L, Esteve-Solé A, Bull D, Anton MC, Basagaña M, Casals F, Deyá A, García-Prat M, Gimeno R, Juan M, Martinez-Banaclocha H, Martinez-Garcia JJ, Mensa-Vilaró A, Rabionet R, Martin-Begue N, Rudilla F, Yagüe J, Estivill X, García-Patos V, Pujol RM, Soler-Palacín P, Katan M, Pelegrín P, Colobran R, Vicente A, Arostegui JI. Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. J Clin. Immunol. 20 Jul 15. doi: 10.1007/s10875-020-00794-7. Online ahead of print. Full Text

    Li H, Jiang W, Ye S, Zhou M, Liu C, Yang X, Hao K, Hu Q. P2Y14 receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis. 2020 May 26;11(5):394. doi: 10.1038/s41419-020-2609-7. Full Text Question: FLICA 660 optimally excites at 660 nm and has a peak emission at 685-690 nm, and Propidium Iodide excites at 615nm. Can I use the FLICA 660 and the Propidium Iodide to detect pyroptosis by Flow cytometry?

    Question: FLICA 660 optimally excites at 660 nm and has a peak emission at 685-690 nm, and Propidium Iodide excites at 615nm. Can I use the FLICA 660 and the Propidium Iodide to detect pyroptosis by Flow cytometry?

    Answer: We have done some two-color panels pairing FLICA 660 with green emission fluors, however, we have not evaluated it alongside Propidium Iodide. That said, despite emission spectra overlap between Propidium Iodide and 660-YVAD-FMK I believe it should be possible to resolve the red vs far red fluors with appropriate compensation. I wanted to make you aware of Green Live/Dead Stain, ICT’s membrane impermeant green fluorescent vital stain for differentiating live and dead cells. This product performs similarly to Propidum Iodide, however, due to its green emission properties, it is compatible with our FLICA 660 products without the need for compensation.

    Related Products

    Recently viewed