Detection of NAD/NADH content in cells or tissue extracts. Detection of NAD/NADH levels in apoptosis, metabolism, proliferation, DNA repair, senescence, endocrine signaling and life span. NAD/NADH detection in Bacterial, fungal and plant cells.
The Fluoro NAD/NADH detection kit utilizes a non-fluorescent detection reagent, which is reduced in the
presence NADH to produce its fluorescent analog and NAD. NAD is further converted to NADH via an
enzyme coupled reaction. The enzyme reaction specifically reacts with NAD/NADH and not with
NADP/NADPH.
530-570nm/590-600nm
Fluorescence plate reader
Store contents as labeled
Ships overnight (domestic), International Priority Shipping
United States
FLNADH100-2: 100 Tests
Part# 6021: Enzyme Mix x 1 (-20C)
Part# 4018: NADH Detection Reagent x 1 (-20C)
Part# 7013: NADH Standard x 1 (-20C)
Part# 3044: NAD/NADH Reaction Buffer x 1 (2-8 C)
Part# 3045: NAD/NADH Lysis Buffer x 1 (2-8 C)
Part# 3046: NAD Extraction Buffer x 1 (2-8 C)
Part# 3047: NADH Extraction Buffer x 1 (2-8 C)
Part# 3051: NADH Standard Diluent x 1 (2-8 C)
FLNADH100-3: 500 TestsPart# 6021: Enzyme Mix x 5 (-20C)
Part# 4018: NADH Detection Reagent x 5 (-20C)
Part# 7013: NADH Standard x 5 (-20C)
Part# 3044: NAD/NADH Reaction Buffer x 5 (2-8 C)
Part# 3045: NAD/NADH Lysis Buffer x 5 (2-8 C)
Part# 3046: NAD Extraction Buffer x 5 (2-8 C)
Part# 3047: NADH Extraction Buffer x 5 (2-8 C)
Part# 3051: NADH Standard Diluent x 5 (2-8 C)
FLNADH100-3: 500 Tests
Product Specific References
PMID | Publication |
35504207 | Luan, Y., et al. 2022. STING modulates necrotic cell death in CD4 T cells via activation of PARP-1/PAR following acute systemic inflammation. nt Immunopharmacol, 108809. |
33593944 | Won, H.I., et al. 2021. Inactivation of the Pta-AckA Pathway Impairs Fitness of Bacillus anthracis during Overflow Metabolism. J Bacteriol, e00660-20. |
28299860 | Sadykov, M.R., et al. 2017. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation . Mol Microbiol, 793-803. |
27374086 | Yin, C., et al. 2016. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate. Oncotarget, 47494-47510. |
27340697 | Gries, C.M., et al. 2016. Potassium Uptake Modulates Staphylococcus aureus Metabolism. mSphere, e00125-16. |
26322513 | Esteve-Gassent, M. D., et al. 2015. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi. PLoS One, e0136707. |
24670634 | Birsoy, K., et al. 2014. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature, 108-12. |
23625849 | Sadykov, M.R., et al. 2013. Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus. J Bacteriol, 3035-44. |
23703906 | Wiley, S.E., et al. 2013. Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis. EMBO Mol Med, 904-18. |
23703322 | Montero, J., et al. 2013. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ, 1465-74. |
23911327 | De Bock, K., et al. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting . Cell, 651-63. |
22305999 | Martin, J. A., et al. 2012. Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Osteoarthritis Cartilage, 323-9. |
22384140 | Schaue, D., et al. 2012. Cellular autofluorescence following ionizing radiation. PLoS One, e32062. |
19217932 | Bickler, P.E., et al. 2009. Inositol 1,4,5-triphosphate receptors and NAD(P)H mediate Ca2+ signaling required for hypoxic preconditioning of hippocampal neurons. Neuroscience, 51-60. |